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The diffusion of a viscous vortex ring in a rotating fluid 
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School of Mathematics and Physics, University of East Anglia, Norwich 
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A viscous vortex ring is considered as an initial disturbance to a uniformly 
rotating fluid. Inertial waves are generated by the disturbance and propagate 
through the fluid affecting the diffusion of the vortex ring with time t. The rate 
of diffusion is found to be proportional to tQ. This result is compared with the 
diffusion rates for non-rotating fluids and for conducting fluids under a uniform 
magnetic field. 

1. Introduction 
When a small disturbance is introduced into an unbounded fluid in uniform 

motion, it will appear as a type of vortex ring provided the influence of the d is -  
turbance is confined to a small region of the fluid. For then the vortex lines 
associated with the disturbance must be closed and confined to the region of the 
disturbance. Thus in order to investigate the spreading of a small disturbance 
through a uniform rotating fluid, it is reasonable to choose a viscous vortex ring 
at  the origin as the initial distribution of disturbance vorticity. As the uniform 
rotation imposes a constraint on motions in the fluid, it seems unlikely that 
the vortex ring will remain coherent as it spreads. Our interest in this paper is 
in the maximum extent of the disturbance after time t ,  and not in the smaller 
details of the motion. 

Phillips (1 956) has shown that the decay of viscous vortex rings may be used 
to represent the motion in the final period of decay of any turbulent motion. 
He found that the extent of the vortex ring increases with time t as {vJ(t  - t,)}, 
where v is the kinematic viscosity and to is a virtual time origin. Saffman (1961) 
has extended this result to include conducting fluids. He showed that the 
final stage of decay of a localized disturbance in a uniform magnetic field may 
be represented by two viscous vortex rings, whose centres are moving in opposite 
directions along the magnetic field with the Alfv6n wave velocity a. That is, if 
a viscous vortex ring disturbs a conducting fluid under a uniform magnetic field, 
the rate of growth of the disturbance along the magnetic field is at. 

In  a uniformly rotating viscous fluid, an initial disturbance will produce 
inertial waves that propagate through the fluid. The properties of such waves 
have been discussed in detail by Chandrasekhar (1961) and by Phillips (1963). 
As this problem in a rotating fluid is not tractable using the methods of Phillips 
or Saffman, a new approach had to be devised to determine a length scale that 
measured the extent of the disturbance at time t .  The results obtained for the 
rotating fluid are unusual and unexpected, and are given in $ 2 .  In  order to verify 
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that the method used gives a valid length scale, the same approach is applied 
to a non-rotating fluid and to a conducting fluid under a uniform magnetic field, 
and correct solutions are obtained. Finally, 55 provides a discussion of the 
differences between the diffusion rates for the different fluids. 

2. Rotating fluid 

reference rotating with angular velocity GI, is 
The vorticity equation for an incompressible fluid, expressed in a frame of 

(2.1) 
a o  - + u . v w  = (w+29).Vu+vV2w. 
at 

In  this equation, w ( x ,  t )  represents the vorticity field and U(X, t )  the velocity 
field, both measured in the rotating frame. If the Rossby number U/Ql and the 
Reynolds number Ul/v  are both small, where I and U are basic length and velocity 
scales, the non-linear terms may be neglected compared with the Coriolis term 
and the viscous term. This assumption requires that variations of the vorticity 
o shall be small compared with the mean vorticity 2s1, and then equation (2.1) 
reduces to (+) 0 = 2 9 . v u .  

The application of the operator 

to equation (2.2) gives a single equation for w 

(4- vv2)2 v2w + (en. V)2 w = 0. 

This represents a type of wave equation for w and is the equation of inertial 
waves. 

Solutions of equation (2.3) may be found by using the Fourier transforms 

w i ( x , t )  = (2n)-% eik.=Xi(k, t)dk, s (2.4a) 

ui(x, t )  = (27r-8 eik.= $i(k, t )  dk, (2.4b) 

where the suffix i indicates the ith component, dk = dlc,dl%,dk, and the integrals 
are over all wave-number space. The Fourier transform of the ith component 
of (2.3) is 

s 
(i + vk2) k2 xi + 4(Q. k)2 xi = 0. (2.5) 

The general solution of equation (2.5) is 

Xi(k, t )  = Bie-vkat cos 
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where B,(k) and C,(k) are arbitrary functions. The solution for the transform q5i 
may be obtained from the Fourier transform of (2 .2) ,  

A further relationship between o and u is 

v x w  = -V%, 

which has a Fourier transform whose ith component is 

Pq5i = i€4,nh,&. (2.8) 

Thus we can reduce the number of arbitrary functions Bi, Cli from six to three. 
Substituting (2.6) and (2.7) into equation (2.8) gives 

K(B, sin (y t )  - ci cos (y t) ] 
= eimn IC, { B, cos rF t )  + C, sin (y t )  ) 

As B, and Ci are independent oft, we must have 

kBi = cimn Ic, C,, ( 2 . 9 ~ )  

- kC, = €imn k, B,. (2.9b) 

These two equations show that the vectors B and C are in different orthogonal 
directions normal to the wave-number vector. Therefore k.  x = 0 and the solu- 
tion (2 .6)  satisfies the continuity equation for an incompressible fluid. The 
remaining three arbitrary functions are determined from the initial distribution 
of vorticity that disturbs the uniform motion. 

The viscous vortex ring 
The viscous vortex ring may be represented at time t = 0 by the distribution 
of vorticity defined by 

o(x, 0) = k5A x xe-z2/41a, (2.10) 

where the vector A is the axis of the ring. The total momentum of the vortex 
ring is proportional to pA, where p is the density of the fluid. The vorticity has a 
maximum value at x = 142. If the radius of the vortex ring is defined as the radius 
of the circle of maximum vorticity, then Z42 is the radius of the ring at time t = 0. 
The streamlines of the velocity field corresponding to (2.10) are shown in figure 1 
in the plane containing A and the rotation vector SL. For simplification, the 
co-ordinate axes have been chosen so that 8 = (O,O, a). The vortex lines are 
circles with centres on A, lying in planes perpendicular to A. The vector A 
gives the orientation and initial total momentum of the vortex ring. 

48-2 
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The Fourier transform of (2 .10)  is the initial condition imposed on the trans- 
form of the vorticity, that is 

Xi(k,O) = (2n)-% e - - i k - x l - 5 ~ .  A x e-x2/412dx 
ZPP P Q s 

= - 4 4 2  kip, A,  k, e-k212 

= Bi, (2 .11)  

\ 

FIGURE 1. Streamlines of vortex ring at time t = 0. 

from equation (2.6). Substituting (2 .11)  into equation ( 2 . 9 a )  gives 

kC, = 42/2i(kmAik,-  kmA,nk,) e-k2~a. 

Therefore, eliminating Bi and C, from (2.6), we have 

xi = -42/2ie-k2@2fvt) e.  A k cos-t-- 2Qk3 1 ( P A i  - k .  Ah,) sin ~ 2 ~ k 3 t ) .  (2 .12 )  
a m  P P 

This is the transform of the vorticity field for the viscous vortex ring after time t 
has elapsed. The coefficients B and C are proportional to k x A and k x (A x k)/k 
respectively and are therefore mutually perpendicular and normal to the wave- 
number vector in accordance with (2 .9 ) .  

k k :  k ( 
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The solution for  large Qt 

The solution (2.12) for the transform xi decreases to zero as time increases and the 
initial disturbance will be dissipated by viscosity. However, it is difficult to 
determine more precisely the behaviour of the disturbance for Qt & 1. We are 
reduced to looking for integrals of xi that may be evaluated for large Qt. Saffman's 
method cannot be used to invert (2.12) as the factor 2Q/k makes the integration 
intractable. 

If Parseval's theorem is applied to the vorticity wi and its transform xi, then 

w t ( x )  d x  = - Xt(k) dk, (2.13) 

as xi( - k) = -xi(k). Substituting for xl, in (2.13) and integrating, we obtain a 
polynomial in inverse powers of fit, whose dominant term for large Qt is given 

s s 
[(4A2, + 3A; + 3-4) + O((Qt)-1}]. (2.14) 

(27$ 
wz , (x )dx  = _ _ _ ~  s 5(P + vt)% 

Similar integrals are obtained for w; and w;. The sum of these three integrals 
gives 2(2n)t A2 

W2(X)dX = ~- s ( 1 2 f U t ) S  * 

This integral is exact as all terms involving Qt cancel out. It represents the total 
vorticity of the fluid and is a measure of the rate of dissipation of the disturbance 
vorticity by viscosity. 

A second integral, that is also an even function of o, may be obtained from 
the differential of the inverse transform of (2.4a). As 

Xi(k, t )  = (2n)-3 e-ik.xui(x, t )  dx, s 
its first derivative is 

Hence, using Parseval's theorem again, 

xgwtdx  = - (dXi/dlcj)'dk. s s 
Substituting for dXl/dkl in (2.15), we obtain 

(2.15) 

where h is a constant. The evaluation of this integral, although tedious, is 
straightforward and the solution contains a finite number of terms. Therefore, 
for large Qt,  the second integral for w1 is 

[(4A2, + 5Ai + 3 4 )  ( f i t )% + O( a t ) ] ,  (2.16) 
16(2n)* 

X2,W2,dX = s 315 (Z2 + vt)% 



758 J .  A .  Johnson 

which is strongly dependent on the basic rotation of the fluid, As a small dis- 
turbance far from the origin is weighted by a large x,-co-ordinate, the integral 
gives an indication of the rate of diffusion in the x,-direction of the vorticity 
of the disturbance away from the initial concentration near the origin. 

Although no physical explanation has been found for the asymmetry of the 
components of A in (2.16), it is connected with the constraint imposed on the fluid 
by the uniform rotation about the x,-axis. The integral of xgw; has the factor 
(5A;+ 4Ai + 3 4 ,  whereas the integral of xgw; has 8(5A2, + 5Ai + 8 4 ) .  These 
numerical differences ultimately produce faster diffusion along the axis of 
rotation compared with directions normal to this axis. 

From the integrals (2.14) and (2.16), we may define a length scale which is 
proportional to the dimensions of the disturbance after time t. We define the 
length L, by 

L; = jx;wFdx/jwjdx. 

L, N F(A) (Ot) (i2+ vt)g, (2.17) 

where P(A) is it function of the direction of A. L, may be considered as a charac- 
teristic length of the disturbance measured along the x,-axis. Moreover, the 
rate of diffusion in the x,-direction is measured by the rate of increase of the length 
L,. Two other length scales L2 and L, may be defined from simi1a.r integrals 
and they will determine the rate of diffusion in the x2- and x,-directions respec- 
tively. In  general, for large fit, the length scales extend a t  the rate (fit) (Z2  + vt)*, 
but the rate of extension is fastest along the x3-axis, parallel to the rotation vector. 
The extent of the disturbance is an ellipsoid whose major axis is along the axis 
of rotation. 

For an inviscid fluid, the rate of spreading of vorticity is only Z(Qt); this is the 
rate at  which inertial waves spread. 

Therefore for large fit, 

The solution for  small Ot 

For t < Q-1, we may replace sin20k3t/k by 2Qk,t/k in (2.12) and then the 
integrals for w1 simplify. For small Qt, we have 

Therefore, for small Qt, 
L, - (22 f v tp .  

(2.18) 

(2.19) 

Before commenting further on these results, we shall derive the corresponding 
expressions for a non-rotating fluid and for a conducting fluid under a uniform 
magnetic field. Then the effects produced by the rotation will be seen more 
clearly. 
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3. Non-rotating fluid 

but now equation (2.2) simplifies to 
In order to obtain a direct comparison with $2, the same method will be used, 

the normal vorticity equation. Its Pourier transform is 

(4 + vkZ) X(k, t )  = 0, 

which has a general solution of the form 

x = B (k) e-vk*t. 

The same distribution of vorticity is introduced at  time t = 0 in the form of a 
viscous vortex ring. The Fourier transform of this distribution is given by equa- 
tion (2.11), and, as 

the solution of (3.1) becomes 
Bdk) = Xi@, 01, 

Xi(k, t )  = - 4J2i~i,pApk~e-k2(22+’~. 

Substituting for x1 in (2.13), the first integral of o1 is 

This integral is exact and valid for all values oft. The second integral is given by 

which is also valid for all t .  

above two integrals, is 

and all three length scales L,, L2, L, are equal. It is to be expected that in a non- 
rotating fluid, the extension of length scales will be isotropic and that there 
will be no favoured direction. Equally, in a rotating fluid, one expects to find a 
preferred direction, as illustrated by the results of the previous section. We may 
verify that the chosen length scale is reasonable by comparing it with a result 
obtained by Phillips (1956). Using an entirely different method, he showed that 
in a non-rotating fluid the radius of a viscous vortex ring increased with time 
as (v(t-to)}* where to is a virtual time origin. The result is equivalent to (3.4) 
as (vto)* is a natural length scale of the problem. 

The integrals (3.2) and (3.3) are identical with integrals (2.18) and (2.19) for 
small at. This means that when t < O(Sz-l), the rotation has no effect on the 
behaviour of the disturbance, and the diffusion rates are the same as for a non- 
rotating fluid. Rotational effects only become important after a time of order Q-1 

has elapsed. 

The length scale of the disturbance, defined as before from the ratio of the 

L, = (12 + vt)&, (3.4) 
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4. Conducting fluid 

conducting viscous fluid are 
Using the rotation of Saffman (1961), the equations of motion in e.m.u. for a 

am 1 
-+u.Vo = w.Vu+vV2w+-Vx(jxB),  
at P 

(4.2) _ -  -Vx(uxH)+hV2H,  i3H 
at 

1 
j = - V x H ,  47T B=puH, V . H = 0 ,  (4.3) 

where B, H, j are the magnetic induction, the magnetic intensity and the current. 
The constants p, A, ,u are density, magnetic diffusivity and permeability. 

If a uniform magnetic field Ha = H,,n where n is a unit vector is applied to a 
conducting fluid which is slightly disturbed by the introduction of a vortex ring 
at the origin, the perturbed magnetic field may be written as 

H = Ha+Hah, 

where h is small. Now, using (4.3), 

1 
- V x (j x B) = go V x {(V x h) x Ha) + O(h2) 
P 47TP 

= ~ ~ ( n . V ) V x h + O ( h z ) .  47TP (4.4) 

Similarly, 
V x ( u x H )  = H,,fn.V)u-H,(h.V)u-H,(u.V) h. 14.5) 

Therefore, substituting (4.5) into (4.2) 

ah 
H o z  = Bo(n. V) u -H, , (h.  V) u -Ho(u. 0) h+/W,Vzh. 

If the magnetic Reynolds number R, = Uljh is small and if h = O(R,), the non- 
linear terms may be neglected and equation (4.6) reduces to 

($-hVz) h = (n.V)u. (4.7) 

Similarly, if the Reynolds numbers Ullv is small, the vorticity equation (4.1) 
with (4.4) becomes 

(4.8) 

where a = (pH,2/47rp)& is the Alfdn wave velocity. Eliminating h from (4.8) and 
the curl of (4.7), a single equation is obtained for the vorticity o, 

(:-vVz) w = a2(n.V)Vx h, 

($-Avz) (‘-~vz) w - a z ( n . ~ ) z o  = 0. (4.9) 
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The Fourier transform of the ith component of (4.9) is 

(i + hk2) (i + vk2) xi + a2(n. k)2 xi = 0, (4.10) 

where xi is defined by equation ( 2 . 4 ~ ) .  
Saffman has shown that the solution for h + v eventually, for large enough t ,  

has a similar form to the solution for h = Y. Therefore, for simplicity, we here 
assume that h = v, and the general solution of (4.10) becomes 

xi( k, t )  = e-'kat(Bi cos ak, t + C, sin ak, t) ,  (4.11) 

where the co-ordinate axes have been chosen so that H, = (I&, 0,O). The initial 
disturbance to the conducting fluid is the viscous vortex ring defined by (2.10). 
Hence, by (2.11) and (4.11), 

xi( k, 0) = B, = - 4 42isiPq A, ZC, e-k2za. 

If J is the Fourier transform of the current j, then the transforms of equations 
(4.3) and (4.8) give 

+vk xi = 4n-k,a2Jt. (i 
1 

4n-a 
Hence, J,(k,t) = ---e-~kat(Cicosu7c,t-Bisinak,t), 

and, if the current is initially zero, then 

Equation (4.11) with C, = 0 gives the velocity transform as 

q5, = 4 J2e-ka(12+ut)(Sij - kikj/k2) A, cos ak,t, 

which has the same form as equation (22)  in Saffman (1961). The solution for 
xi reduces to xi(k, t )  = - 4J2isipqApkq cos (uk,t) e-kZ(z2+vo, 

and the integrals for o,, corresponding to (2.14) and (2.16) for the rotating fluid, 
may be evaluated. For the conducting fluid, 

(4.12) 

The length scale of the disturbance, defined as before from the ratio of the above 

(4.14) 
two integrals, is L, N at for a2t2 9 l2  + vt, 
and L, - (22 + vt)B for a%2 < 12 + vt. (4.15) 

This is the length scale measured in the direction of the magnetic field. By 
similar calculations, it is possible to show that 

L2 = L, = (12 f vt)4 
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for all t .  Thus the results obtained are in accordance with the solution derived 
by Saffman which showed that the initial vortex ring splits up into two vortex 
rings which move in opposite directions along the uniform magnetic field with 
the Alfvbn wave velocity. For small t ,  the viscous diffusion is the dominant 
effect and the diffusion rate is t4 in all directions. However, for large t ,  the dis- 
tance between the rings is 2at and the diffusion rate is at along the magnetic field 
but remains at  t* in other directions. 

1 

-i/ 

FIGURE 2. The extension of the length scale L for different fluids. Curve A, inviscid, 
non-rotating, L = Z; curve B, viscous, non-rotating, L - (Z2+vt)fr; curve C, inviscid, 
rotating, L N Z(Qt); curve D, viscous, rotating, L N ( f i t )  (Z2+ vt):. 

5. Discussion 
In  the preceding two sections we have shown that our method for calculating 

the extent of the disturbance gives satisfactory results for a non-rotating fluid 
and for a conducting fluid in a uniform magnetic field. This suggests that our 
approach is generally valid and that the unexpected diffusion rates obtained for 
the rotating fluid are correct. Although we may expect that the magnetic field 
and the rotation would have similar effects on the fluid as they both imposed a 
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restraint on the fluid that produces a preferred direction, our theory suggests 
otherwise. 

A critical difference between the influence of the magnetic field and of the 
uniform rotation is clearly shown by the group velocities of the waves they 
generate. The Alfvh-wave group velocity is a, constant in magnitude, and 
directed along the uniform magnetic field. Whereas, the inertial wave group 
velocity is 

2 
L3 

cg = - (SZ  x k) x k, 

whose magnitude varies with the wave-number, and its direction lies in the 
plane of SZ and k but is always perpendicular to k. The factors 2!22/k and a appear 
in the sinusoidal terms of (2.12) and (4.11), the expressions for the Fourier 
transforms of the vorticity, and it is the presence of the lc that prohibits the use 
of Saffman’s method for the rotating fluid case. The net result is that energy is 
propagated in all directions by the inertial waves but only along the magnetic 
field by the Alfvdn waves. Moreover, the length scales L,, L2, L3 are all propor- 
tional to t% in the rotating fluid, whereas only the length scale Ll along the mag- 
netic field is proportional to t in the conducting fluid. 

For the rotating fluid, the basic results are summarized in figure 2 .  For small 
Lit, the diffusion rates are the same as for a non-rotating fluid, that is L - ( a 2 +  vt)&. 
However, for large a t ,  the rate of diffusion accelerates to become 

L N (at) ( P + Y t ) k  

Thus a transition period exists when at = O(1) during which the diffusion 
process becomes affected by the uniform rotation. In  an inviscid fluid, the dis- 
turbance is spread entirely by inertial waves, whose group velocity has magnitude 
O ( a / k ) ,  and we have shown that, when t > O(Li-l), the length scale increases 
linearly with time. It seems that more detailed knowledge of the flow pattern 
for large at is required before sufficient insight into the problem can be obtained 
to give a satisfactory physical reason that will explain this unusual behaviour. 
At present it is only possible to say that the accelerated diffusion rate is due to a 
combination of viscous diffusion and the peculiar properties of inertial waves. 

The author is indebted to Prof. 0. M. Phillips for advice and helpful discus- 
sions during the course of this work, 
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